
KPA EtherCAT Master 2 Advantages
A new generation of KPA EtherCAT Master (Master) core brings exceptional possibilities of the
automation control over EtherCAT network. Master 1 has many limitations due to its inflexible and
monolithic architecture. It leads to difficulties in its utilization on some targets, for example:

• Targets with no OS installed

• Targets with limitation of threads number in one process

• Targets with a lack of system resources

In the new Master core we revised its architecture and do our best to avoid all limitations of previous
versions and improve and extend Master functionality. Nevertheless, Master 2 keeps compatibility
with API layer of Master 1. Here are descriptions of Master 2 features.

Asynchronous control

A new control model is implemented in Master 2 called "asynchronous control" that allows parallel
execution of Master’s and user’s operations and other features based on it.

Parallel operations execution. The asynchronous model makes it possible not to interrupt user
execution thread while the Master performs API call. The user can continue the work and check for API
call result when it is necessary.

Postponed operations. Asynchronous mode assumes no immediate result, Master executes the
operation as soon as it is ready; returned code and data are stored in the operation’s handle.
Depending on a situation user can either wait for the operation’s result or continue working and check
if the operation is complete when the user needs it.

Multiple operations. The model allows to execute several operations asynchronously, and to wait for
completion of all of them. Asynchronous control requests the usage of a unique identifier (of
transactions, sessions etc.) that directly links pending request and operation result. Master uses the
object handle as such identifier. All asynchronous operations are always bound to a certain instance of
object. It allows getting the current state of a request and extracting an operation result.

Synchronization queue is used for receiving asynchronous calls processing notification; it helps to
combine several operations related to different functions, into the one queue to wait. It is possible to
handle the whole Master on the single synchronization queue (running a "single thread" model).

In Master 1 with the synchronous execution of operations the user should wait for API call completion
and there is no ability to do any work until API call is finished. The asynchronous model makes it
possible not to interrupt user execution thread while the Master performs API call. The user can
continue the work and check for API call result when it is necessary.

Master Simple Tasks execution

Master 2 implies the task based model that means division of the operations into Master Simple Tasks
(MST). In this case MST is the smallest item of execution, i.e. it cannot be stopped. Here is the list of
features based on this model.

Master Simple Task execution. It takes minimum execution time and allows receiving a quick
reaction on the request.

Simulated multi-thread mode. Dividing the operations into MST-s it is possible to execute them
parallel that simulates multi-thread Master mode. The order of MST-s execution is defined by their

Master 2 Advantages 1



priorities.

Multithreading. Master 2 allows using any number of Master threads for MST-s execution. In this case
all MST-s are assigned to four executors depending on their purpose: real-time, background,
synchronization and system. Then executors are assigned to different threads with different priority.
In comparison to previous Master versions where the only three threads may be used, such approach
brings the following advantages:

Distribution of cores load. Multithreading allows optimal distribution of cores load by assigning
to them different MST-s execution.

Simultaneous tasks execution. MST-s assigned to different threads can be executed
simultaneously.

Multiple EtherCAT Cyclic Tasks

Besides Master Simple Tasks, Master 2 supports multiple EtherCAT Cyclic Tasks (ECT). KPA EtherCAT
Studio provides an possibility to generate ECT. These tasks may be controlled by Master or by an
external application. Each ECT is assigned to certain Process Data and has particular cycle of
execution.

Using ECT-s the user can run them with different cycles, at different times. That allows to control the
bus load by assigning the operations with different cycles of execution to ECT-s.

Modular design

Modular design brings an incredibly flexible and adjustable Master core. Almost all parts, including
core components, are designed as separate modules. It allows building Master core according to the
user’s needs and achievement of optimal performance and functionality balance. Here is the list of
Modular design advantages:

Split functionality to isolated modules. Each module is designed as an isolated unit with its own
API, PI variables, events, configuration via INI file, and documentation.

Functionality extension. A new module for each new functionality should be created.
Optimization. It is also easy to optimize Master core by disabling modules or their replacement.

PI-driven control

Master 2 implements new approach to access and work with data in process image (PI). Access to PI is
performed by PI client. It is an object that provides read/write access to PI, delivers data from PI to
internal client’s buffer, can be subscribed to events and PI changes. New interface allows several users
get access to PI simultaneously. PI-driven control brings the list of advantages described below.

Protected access to PI. Each part of PI can be owned by only one client, that restricts a write access to
PI. Only one client can write data to specified PI area, it is forbidden for all others.

Multiple PI clients. The user can create any number of PI clients. Each of them will be mapped to
particular PI area, subscribed to different events, have different rights and isolated internal buffer.

Mapping of PI variables to the user’s data structure. The user can map particular PI variables to
their own structure and then work only with their structure without direct call to PI variables.

Atomic operations. PI client data is processed by single non interruptable task. That guarantees the
data consistency.

2 Master 2 Advantages

https://koenig-pa.de/products/ethercat/kpa-ethercat-studio/
https://koenig-pa.de/products/ethercat/kpa-ethercat-studio/


Multiple delivery buffers. It is a mode when PI client uses several buffers while performing an
operation. For example, when Master has already performed the operation but user’s application is
still busy and cannot fetch the operation’s data. In this case PI client can use several delivery buffers
and store the data got on each iteration to different buffers. When the user’s application becomes
free, it consistently fetches the got data from the buffers. Therefore, it guarantees safekeeping of all
obtained data.

Delivery by write access or by event. Thanks asynchronous interface and PI-driven control it is not
necessary user’s application to ask Master data every Master cycle. Now user can once configure
Master to send certain (required) data one of the ways:

by write access - when write access to certain area in PI occurs.

by event - certain event occurs.

Diagnostics in Process Image

In comparison to Master 1, in Master 2 all diagnostic data are located in Process Image. This approach
allows getting diagnostic data simultaneously with process data. It does not require additional calls for
obtaining the diagnostics that simplify Master work.

Now the user can easy watch how changes of Process Data influence the diagnostics changes. To
visualize diagnostics changes it is possible to get snapshots of the corresponding signals and view
them in the Run-time Data Logger tool in KPA EtherCAT Studio.

PI Logger

Using multiple PI clients now it is possible to monitor changes of any PI variables in run-time mode
with the help of Run-time Data Logger tool of KPA EtherCAT Studio. Master captures snapshots of
configured PI variables (user’s, Slave’s or Master service’s etc.) on desired event, then stores multiple
snapshots in a buffer and send it to Studio. The user can analyze changes of the variables by using
Run-time Data Logger tool (in Studio) where they are represented in the chart view.

Figure 1. Example of variables chart in Run-time Data Logger

PI Logger can be used as a provider data to third-party tools such as MATLAB or LabVIEW or to any

Master 2 Advantages 3

https://koenig-pa.de/products/ethercat/kpa-ethercat-master/kpa-ethercat-master-stack-packages/process-image-logger/


Python based tools for further advanced analysis.

Events

In comparison to Master 1 where events were used within the Event Handler feature (optional and
need to be licensed additionally), new Master 2 core is based on events model. All Master processes
are activated/performed by events. Each Master module has events which can be used by both Master
and a control application.

Event is a type of message that Master generates in some points of execution, when it is necessary to
inform a client about some changes in Master state, configuration, or processing. Events can notify
about errors, warnings or just inform about something. All events are generated in the identical
format.

Figure 2. Event format

Where
Severity – severity of Event, allowed values: INFO, WARNING, ERROR or TRACE (can be used for user’s
events).
Module ID – identifier of Master module which generates corresponding Event notification, e.g.
Master module for diagnosing the bus topology (the bus state, connection of devices etc.), or slaves
(their current and requested states, failed init commands etc.), or Master (its state, invalid
configuration, broken connections etc.).
ID – event identifier in the Master module.
Argument 1, Argument 2, Argument 3 - event specific parameters.

Events are used by Master to synchronize tasks execution, notify about cyclic events, status events or
emergency events. All Master events are available on the level of user application. It allows the
application to implement the mode of event-driven execution. Most of the time the application sleeps
and does not require processor’s resources. As soon as the certain Master event happens, the
application takes the control. Besides, a part of user-objects may be synchronized by Master events.
For example, PI Client is configured to delivery data by a particular event.

Event logger provides ability to sniffer internal Master events for remote logging tool. It stores
preconfigured Master events into PI variable. So, remote monitor tool can then use PI logger to
capture event trace.

EtherCAT network driver: zero copy

In Master 2 the interface of EtherCAT network driver has been updated. In Master 1 while sending
frame, Master copies data to its intermediate buffer and then the driver sends it. Now Master 2 sends
frame directly to the hardware without a copying to an intermediate buffer. Master requests a buffer
from the driver and passes the data to it. The driver allocates an area in the hardware pool (by Master
request), fills it with frame’s data and sends it. This approach improves Master’s performance.

4 Master 2 Advantages



Master Redundancy

EtherCAT configuration with Master Redundancy enabled comprises one active (primary) Master
device and one or several passive (secondary) Masters. Primary Master might not be configured to
Master Redundancy, but it is preferable to use KPA EtherCAT Master software to utilize all the
advantages of this technology. Secondary Master is connected to the bus as a shadow agent. It is
sniffing data telegrams as they pass by without any changes. At the same time, this Master calculates
the time when each telegram arrives and tracks possible delays between expected and actual time of
arrival.

Figure 3. EtherCAT configuration with Master Redundancy

When the telegram is delayed, a watchdog timer starts. After the time specified in the Master’s settings
is elapsed, the Master starts his failover protocol:

1. Internal switch of the Master is triggered: now the Master is able to write the bus.

2. A new telegram prepared by the secondary Master is written to the bus.

3. In this telegram, a request to free the bus is sent to the active Master, because he might be still
online but suffering from some internal troubles.

4. Control application of the new bus Master is notified about going online.

It is possible to return the active Master into its passive state with the bus configurator tool; another
passive Master will take control automatically.

To enable multiple redundant Masters, their watchdog timers are configured differently. It is possible
to force random generation of the watchdog time for each Master. Thus, we avoid the situation of
collision when two or more secondary Masters can attempt to start the failover protocol.

The feature that we propose can protect industrial communication network from a severe, hard to
recover failure of its control node. It utilizes architecture peculiarities of EtherCAT technology to
implement cost-effective solution that greatly increases fault tolerance without compromising its
flexibility and performance. Almost any EtherCAT-enabled industrial automation system can be
upgraded with this feature: you need to attach to the bus one or several clones of your controller with
only slight or even no modifications of its logic.

Master 2 Advantages 5

https://koenig-pa.de/blog/ethercat-master-redundancy/


Autoconfigurator

Master 2 provides a possibility to configure the bus on the fly. The Autoconfigurator module allows the
user application to select slave’s configuration (uESI) that will be applied. Then the module generates
Master configuration file (ENI) with applied uESI. Further, this ENI will be used at Master work. uESI is a
file describing custom slave’s configuration and generated in KPA EtherCAT Studio. It is possible to
create a set of uESI-s in advance and then applied them to Master depending on the user’s needs. The
Autoconfigurator functionality may be used at least in two ways:

1. To switch between different configurations of the slave.
For example, Servo Drive has two working modes Velocity and Position that require different slave
settings. The user can create two uESI-s with different PDO-s configuration, Init commands or other
settings for each working mode respectively. And then the user selects the corresponding uESI and
applies it in Master via the Autoconfigurator module.

2. To switch between bus configurations with different number of slaves.
Master 2 allows mapping Process Image variables to slaves by slave’s names. Due to that the PLC
application can set the slaves that will be used. For example, there are two working modes of the
system: the first, socalled Full, involves 10 slaves on the bus, the second - Standard - only two
slaves. Using the Online Configurator module it is possible to configure Master to work in Standard
mode. Master scans the bus, finds only two slaves set by PLC and pass their identification
information to Online Configurator. After that, Autoconfigurator gets slaves’ uESI-s, generates the
corresponding ENI and sends it to Master.

Figure 4. ENI generation via Autoconfigurator

ESC Port Monitor

Master 2 has an inbuilt Port Monitor function.
Master automatically switches ESC port state from Auto to Auto-close and then handles ports status
(monitors, switches) to protect cyclic communication from unexpected frame brake.

6 Master 2 Advantages

https://koenig-pa.de/products/ethercat/kpa-ethercat-master/kpa-ethercat-master-stack-packages/autoconfigurator/


Hardware Timed Send

The KPA EtherCAT Master starting with version 2.4 supports the function Hardware timed send. It
enables the cyclic frame to be sent exactly at the beginning of the Master cycle without any delays.
Usually, the Master starts preparing the cyclic frame at the beginning of the Master cycle. As a result,
the actual time of frame transmission is delayed by the time of preparation.

The Hardware timed send function uses a hardware module (HW module) on the target and can only
be activated if the target system has a hardware timer. If it does not, a software emulation of it can be
used. Timed send emulation makes it possible to imitate the timed send functionality. Using the HW
module allows to achieve higher accuracy at sending frames, less then 1 us. And also, the Hardware
timed send functionality uses a scheduler for sending background frames that speed up a process
sending.

The timed send emulation is a software solution so it does not offer the benefits of HW module
(accuracy and sending speed). The timed send emulation intends to provide the same control interface
as the hardware timed send functionality. Its interface allows to build cyclic frames in advance
(automatically or by user request) and to schedule a send request to the driver. But as a software
nature of the timed send emulation it can jitter due to an operation system dependent timer jitter,
while the hardware timed send does not have a jitter because of using hardware timer interrupts.

Python Interface Library

This extension allows to communicate with Master via RPC Server (included into Master package by
default). With RPC Server, it is possible to use Python application to configure or diagnose Master.
Python applications are useful to visualize some processes, to create charts/diagrams or for online
configuring (the Autoconfigurator feature).

Figure 5. Exampe of Python Interface Library usage

koenig-pa GmbH

Im Talesgrund 9a

91207 Lauf a.d. Pegnitz

Germany

https://koenig-pa.de/

Contact

email: sales@koenig-pa.de

tel.: +49 9128 725 330

tel.: +49 9123 960 5796

All company processes, from a product order to technical support,

are managed according to our quality management system.

Copyright © koenig-pa GmbH, Germany. All rights reserved.

EtherCAT® is registered trademark and patented technology, licensed

by Beckhoff Automation GmbH, Germany.

Master 2 Advantages 7

https://koenig-pa.de/products/ethercat/kpa-ethercat-master/kpa-ethercat-master-stack-packages/hardware-timed-send/
https://koenig-pa.de/products/ethercat/kpa-ethercat-master/kpa-ethercat-master-stack-packages/kpa-ethercat-python/

	Master 2 Advantages
	KPA EtherCAT Master 2 Advantages
	Asynchronous control
	Master Simple Tasks execution
	Multiple EtherCAT Cyclic Tasks
	Modular design
	PI-driven control
	Diagnostics in Process Image
	PI Logger
	Events
	EtherCAT network driver: zero copy
	Master Redundancy
	Autoconfigurator
	ESC Port Monitor
	Hardware Timed Send
	Python Interface Library


